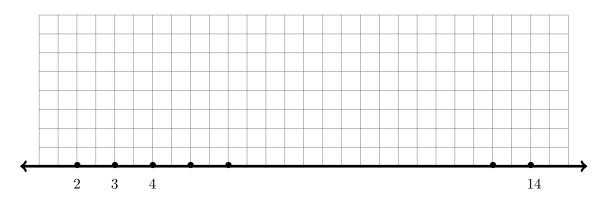
Elementary Statistics Study Guide 19 Due Date:			Name:					
			Class:					
			Score:					
			200101					
Your solutions:	must be	e consis	tent wit	th class 1	notes & 1	esources.		
Be	Neat, Or	$\mathbf{ganized}, \mathbf{a}$	and No W	V ork \Leftrightarrow No	Points			
1. Consider the data	2, 4, 6, 8, 1	0,12, and	14. Store	\mathbf{them} in L	$_{1}$, and then	1		
(a) (2 points) fir	\mathbf{d} μ .							
					(a)			
(b) (2 points) fir	$\mathbf{d} \ \sigma$.							
	- o				(b)			
(c) (3 points) fir	$\mathbf{d} \ \sigma^2$.							
(2) (2				_	` ′			
(d) (2 points) Ta list all your s		_		ı replaceme	ent from th	is population		
	2.4	2.0	0.0	0.10	0.10			
2,2	2,4	2,6	2,8	2,10	2,12			
4, 2	4,4							
,	,							
6, 2								
8,2								

10, 2


(e) (2 points) Now find the mean of each sample, and place all the sample means in the table below:

2	3	4	5	6	7	
3	4					
4						

(f) (3 points) Complete the following probability distribution table for all the sample means: Write $P(\overline{x})$, in fractions (do not reduce).

\overline{x}	$P(\overline{x})$	\overline{x}	$P(\overline{x})$	\overline{x}	$P(\overline{x})$
1	<u>0</u> 49				
2	$\frac{1}{49}$				
3	$\frac{2}{49}$				
4					
				15	<u>0</u> 49

(g) (6 points) Draw the probability distribution histogram using \bar{x} and $p(\bar{x})$ superimposed with a bell curve. Clearly label and mark your graph.

Now enter all the sample means \overline{x} in L_2 , and corresponding probabilities $P(\overline{x})$ in L_3 .

(h) (2 points) find $\mu_{\overline{x}}$.

(h) _____

(i) (2 points) find $\sigma_{\overline{x}}$.

(i) _____

(j) (3 points) find $\sigma_{\overline{x}}^2$.

(j) _____

2. With a sample size n=16 of the normally distributed population with the mean of $\mu=6500$ and standard deviation of $\sigma=275$,

(a) (2 points) find $\mu_{\overline{x}}$.

(a) _____

(b) (3 points) find $\sigma_{\overline{x}}$.

(b) _____

3. With a sample size n=25 of the normally distributed population with the mean of $\mu=125$ and standard deviation of $\sigma=10$,

(a) (2 points) find $\mu_{\overline{x}}$.

(a) _____

(b) (3 points) find $\sigma_{\overline{x}}$.

(b) _____

	Drawing, Labeling, Shading & Full TI Command Required for	Every Problem.
4.	The heights of a certain breed of dogs has a normal distribution 28 inches and a standard deviation of 4 inches. If we randomly dogs, what is probability that the mean height of 64 dogs is (a) (3 points) less than 27 inches?	
	(b) (3 points) greater than 28.5 inches?	(a)
5.	The average life of a certain blender is 4.5 years with a standard years. Assuming that the lives of these blenders follow approximation, find (a) (3 points) the probability that the mean life of a random blenders fall between 4 and 6 years.	kimately a normal
	(b) (4 points) the value of \bar{x} that separates the top 15% fr random sample of 8 such blenders. Round your answer to 6	

Knowing the course expectations should be a high priority.

(b) _